216

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Ehong, Y., Ezhang, H., Ehuang, L., Eli, D., & Esong, F., (2016). Overexpression of a stress-

responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance

in rice. Front. Plant Sci., 7, 4.

El-Esawi, M. A., Al-Ghamdi, A. A., Ali, H. M., & Ahmad, M., (2019b). Overexpression

of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat

(Triticum aestivum L.). Genes, 10, 163.

El-Esawi, M., & Alayafi, A., (2019a). Overexpression of StDREB2 transcription factor

enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes, 10, 142.

Esmaeili, N., Yang, X., Cai, Y., Sun, L., Zhu, X., Shen, G., Payton, P., et al., (2019).

Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant

tolerance to drought, salt, and heat stresses. Sci. Rep., 9, 1–15.

Fang, L., Su, L., Sun, X., Li, X., Sun, M., Karungo, S. K., Fang, S., et al., (2016). Expression

of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating

jasmonic acid synthesis. J. Exp. Bot., 67, 2829–2845.

Fang, Q., Wang, X., Wang, H., Tang, X., Liu, C., Yin, H., Ye, S., et al., (2020). The poplar

R2R3 MYB transcription factor PtrMYB94 coordinates with abscisic acid signaling to

improve drought tolerance in plants. Tree Physiol., 40, 46–59.

Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., & Xiong, L., (2015). A stress-responsive

NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of

reactive oxygen species in rice. J. Exp. Bot., 66, 6803–6817.

Feng, Z. Y., Zhang, B. T., Ding, W. N., Liu, X. D., Yang, D. L., Wei, P. L., Cao, F. Q., et

al., (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res., 23,

1229–1232.

Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D. L., Wang, Z., et al., (2014).

Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas

induced gene modifications in Arabidopsis. Proc. Natl Acad. Sci. USA, 111, 4632–4637.

Fleury, D., Jefferies, S., Kuchel, H., & Langridge, P., (2010). Genetic and genomic tools to

improve drought tolerance in wheat. J. Exp. Bot., 61, 3211–3222.

Foley, J. E., Yeh, J. R. J., Maeder, M. L., Reyon, D., Sander, J. D., Peterson, R. T., & Joung,

J. K., (2009). Rapid mutation of endogenous zebrafish genes using zinc finger nucleases

made by oligomerized pool engineering. PLoS One, 4, e4348.

Friedland, A. E., Tzur, Y. B., Esvelt, K. M., Colaiacovo, M. P., Church, G. M., & Calarco,

J. A., (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat.

Methods, 10, 741–743.

Fritsche-Neto, R., & Borem, A., (2012). In: Fritsche-Neto, R., & Borem, A., (eds.), Plant

Breeding for Abiotic Stress Tolerance. Springer Berlin Heidelberg, Berlin, Heidelberg,

Heidelberg.

Fuganti-Pagliarini, R., Ferreira, L. C., Rodrigues, F. A., Molinari, H. B. C., Marin, S. R.

R., Molinari, M. D. C., Marcolino-Gomes, J., et al., (2017). Characterization of soybean

genetically modified for drought tolerance in field conditions. Front Plant Sci., 8, 1–15.

Fujita, T., Maggio, A., Garcia-Rios, M., Bressan, R. A., & Csonka, L. N., (1998). Comparative

analysis of the regulation of expression and structures of two evolutionarily divergent genes

from D1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol., 118, 661–674.

Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M., Seki, M., Hiratsu, K., et al.,

(2005). AREB1 I s a transcriptional activator of novel ABRE dependent ABA signaling that

enhances drought stress tolerance in Arabidopsis. Plant Cell, 17, 3470–3488.